ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc5 GIF version

Theorem sbc5 2809
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
sbc5 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2794 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 exsimpl 1524 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) → ∃𝑥 𝑥 = 𝐴)
3 isset 2578 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
42, 3sylibr 141 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
5 dfsbcq2 2789 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 eqeq2 2065 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
76anbi1d 446 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
87exbidv 1722 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sb5 1783 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
105, 8, 9vtoclbg 2631 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
111, 4, 10pm5.21nii 630 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  [wsb 1661  Vcvv 2574  [wsbc 2786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2787
This theorem is referenced by:  sbc6g  2810  sbc7  2812  sbciegft  2815  sbccomlem  2859  csb2  2881  rexsns  3436  rexsnsOLD  3437
  Copyright terms: Public domain W3C validator