![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcel21v | GIF version |
Description: Class substitution into a membership relation. One direction of sbcel2gv 2878 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcel21v | ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2824 | . 2 ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐵 ∈ V) | |
2 | sbcel2gv 2878 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | biimpd 142 | . 2 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵)) |
4 | 1, 3 | mpcom 36 | 1 ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 Vcvv 2602 [wsbc 2816 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sbc 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |