 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2a GIF version

Theorem sbceq2a 2834
 Description: Equality theorem for class substitution. Class version of sbequ12r 1697. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 2833 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21eqcoms 2086 . 2 (𝐴 = 𝑥 → (𝜑[𝐴 / 𝑥]𝜑))
32bicomd 139 1 (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103   = wceq 1285  [wsbc 2824 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-sbc 2825 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator