![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcieg | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | sbcieg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | sbciegf 2846 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∈ wcel 1434 [wsbc 2816 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sbc 2817 |
This theorem is referenced by: sbcie 2849 ralsng 3441 rexsng 3442 ralrnmpt 5341 rexrnmpt 5342 nn1suc 8125 cjth 9871 bezoutlemnewy 10529 bezoutlemstep 10530 bezoutlema 10532 bezoutlemb 10533 prmind2 10646 |
Copyright terms: Public domain | W3C validator |