![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcnestg | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcnestg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | ax-gen 1379 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝜑 |
3 | sbcnestgf 2954 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
4 | 2, 3 | mpan2 416 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 Ⅎwnf 1390 ∈ wcel 1434 [wsbc 2816 ⦋csb 2909 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sbc 2817 df-csb 2910 |
This theorem is referenced by: sbcco3g 2960 |
Copyright terms: Public domain | W3C validator |