 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcopeq1a GIF version

Theorem sbcopeq1a 5841
 Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2796 that avoids the existential quantifiers of copsexg 4009). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
sbcopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))

Proof of Theorem sbcopeq1a
StepHypRef Expression
1 vex 2577 . . . . 5 𝑥 ∈ V
2 vex 2577 . . . . 5 𝑦 ∈ V
31, 2op2ndd 5804 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2061 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 sbceq1a 2796 . . 3 (𝑦 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑦]𝜑))
64, 5syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑[(2nd𝐴) / 𝑦]𝜑))
71, 2op1std 5803 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2061 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 sbceq1a 2796 . . 3 (𝑥 = (1st𝐴) → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
108, 9syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
116, 10bitr2d 182 1 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102   = wceq 1259  [wsbc 2787  ⟨cop 3406  ‘cfv 4930  1st c1st 5793  2nd c2nd 5794 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fv 4938  df-1st 5795  df-2nd 5796 This theorem is referenced by:  dfopab2  5843  dfoprab3s  5844
 Copyright terms: Public domain W3C validator