ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrext GIF version

Theorem sbcrext 2863
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcrext (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem sbcrext
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2795 . . 3 ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V)
21a1i 9 . 2 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V))
3 nfnfc1 2197 . . 3 𝑦𝑦𝐴
4 id 19 . . . 4 (𝑦𝐴𝑦𝐴)
5 nfcvd 2195 . . . 4 (𝑦𝐴𝑦V)
64, 5nfeld 2209 . . 3 (𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V)
7 sbcex 2795 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
872a1i 27 . . 3 (𝑦𝐴 → (𝑦𝐵 → ([𝐴 / 𝑥]𝜑𝐴 ∈ V)))
93, 6, 8rexlimd2 2448 . 2 (𝑦𝐴 → (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V))
10 sbcco 2808 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
11 simpl 106 . . . . 5 ((𝐴 ∈ V ∧ 𝑦𝐴) → 𝐴 ∈ V)
12 sbsbc 2791 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
13 nfcv 2194 . . . . . . . . 9 𝑥𝐵
14 nfs1v 1831 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1513, 14nfrexxy 2378 . . . . . . . 8 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
16 sbequ12 1670 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1716rexbidv 2344 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑))
1815, 17sbie 1690 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
1912, 18bitr3i 179 . . . . . 6 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
20 nfcvd 2195 . . . . . . . . . 10 (𝑦𝐴𝑦𝑧)
2120, 4nfeqd 2208 . . . . . . . . 9 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
223, 21nfan1 1472 . . . . . . . 8 𝑦(𝑦𝐴𝑧 = 𝐴)
23 dfsbcq2 2790 . . . . . . . . 9 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2423adantl 266 . . . . . . . 8 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2522, 24rexbid 2342 . . . . . . 7 ((𝑦𝐴𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2625adantll 453 . . . . . 6 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2719, 26syl5bb 185 . . . . 5 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2811, 27sbcied 2822 . . . 4 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2910, 28syl5bbr 187 . . 3 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
3029expcom 113 . 2 (𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)))
312, 9, 30pm5.21ndd 631 1 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  [wsb 1661  wnfc 2181  wrex 2324  Vcvv 2574  [wsbc 2787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788
This theorem is referenced by:  sbcrex  2865
  Copyright terms: Public domain W3C validator