Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcth GIF version

Theorem sbcth 2800
 Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1 𝜑
Assertion
Ref Expression
sbcth (𝐴𝑉[𝐴 / 𝑥]𝜑)

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3 𝜑
21ax-gen 1354 . 2 𝑥𝜑
3 spsbc 2798 . 2 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 15 1 (𝐴𝑉[𝐴 / 𝑥]𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1257   ∈ wcel 1409  [wsbc 2787 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576  df-sbc 2788 This theorem is referenced by:  rabrsndc  3466  iota4an  4914
 Copyright terms: Public domain W3C validator