ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbim GIF version

Theorem sbim 1869
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbimv 1815 . . . 4 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓))
21sbbii 1689 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓))
3 sbimv 1815 . . 3 ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
42, 3bitri 182 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
5 ax-17 1460 . . 3 ((𝜑𝜓) → ∀𝑧(𝜑𝜓))
65sbco2v 1863 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
7 ax-17 1460 . . . 4 (𝜑 → ∀𝑧𝜑)
87sbco2v 1863 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
9 ax-17 1460 . . . 4 (𝜓 → ∀𝑧𝜓)
109sbco2v 1863 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)
118, 10imbi12i 237 . 2 (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
124, 6, 113bitr3i 208 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  [wsb 1686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687
This theorem is referenced by:  sbrim  1872  sblim  1873  sbbi  1875  moimv  2008  nfraldya  2401  sbcimg  2856  zfregfr  4324  tfi  4331  peano2  4344
  Copyright terms: Public domain W3C validator