![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbrim | GIF version |
Description: Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbrim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 1870 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbrim.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | sbh 1701 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 3 | imbi1i 236 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
5 | 1, 4 | bitri 182 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 [wsb 1687 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 |
This theorem is referenced by: sbco2d 1883 sbco2vd 1884 hbsbd 1901 |
Copyright terms: Public domain | W3C validator |