![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbt | GIF version |
Description: A substitution into a theorem remains true. (See chvar 1682 and chvarv 1855 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sbt.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbt | ⊢ [𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbt.1 | . 2 ⊢ 𝜑 | |
2 | 1 | nfth 1394 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | 2 | sbf 1702 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 1, 3 | mpbir 144 | 1 ⊢ [𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: [wsb 1687 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-i9 1464 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 |
This theorem is referenced by: vjust 2611 |
Copyright terms: Public domain | W3C validator |