ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp GIF version

Theorem seinxp 4438
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)

Proof of Theorem seinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4435 . . . . . 6 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
21ancoms 259 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
32rabbidva 2565 . . . 4 (𝑥𝐴 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
43eleq1d 2122 . . 3 (𝑥𝐴 → ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V))
54ralbiia 2355 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
6 df-se 4097 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
7 df-se 4097 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
85, 6, 73bitr4i 205 1 (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 102  wcel 1409  wral 2323  {crab 2327  Vcvv 2574  cin 2943   class class class wbr 3791   Se wse 4093   × cxp 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-se 4097  df-xp 4378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator