ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serif0 GIF version

Theorem serif0 10102
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serif0.2 (𝜑𝑀 ∈ ℤ)
serif0.3 (𝜑𝐹𝑉)
serif0.4 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
serif0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serif0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serif0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serif0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serif0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 10101 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 397 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
63cau3 9942 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
75, 6sylib 131 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
83peano2uzs 8623 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 266 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 8578 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 8583 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 8622 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5206 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))
1413oveq2d 5556 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))))
1514fveq2d 5210 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))))
1615breq1d 3802 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2669 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1918adantld 267 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2399 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥)
21 simpr 107 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3syl6eleq 2146 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 8578 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 8592 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 271 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5206 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑚) = (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))
28 oveq1 5547 . . . . . . . . . . . . . . 15 (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1))
2928fveq2d 5210 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))
3027, 29oveq12d 5558 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))))
3130fveq2d 5210 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))))
3231breq1d 3802 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3332rspcv 2669 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3426, 33syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
35 serif0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
363, 1, 35iserf 9397 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
3736ad2antrr 465 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
383uztrn2 8586 . . . . . . . . . . . . . . 15 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3921, 38sylan 271 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4026, 39syldan 270 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
4137, 40ffvelrnd 5331 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) ∈ ℂ)
423uztrn2 8586 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
439, 42sylan 271 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4437, 43ffvelrnd 5331 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) ∈ ℂ)
4541, 44abssubd 10020 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
46 eluzelz 8578 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4746adantl 266 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4847zcnd 8420 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
49 ax-1cn 7035 . . . . . . . . . . . . . . 15 1 ∈ ℂ
50 npcan 7283 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
5148, 49, 50sylancl 398 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5251fveq2d 5210 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹, ℂ)‘𝑘))
5352oveq2d 5556 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)))
5453fveq2d 5210 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))))
551ad2antrr 465 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
56 eluzp1p1 8594 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5722, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
58 eqid 2056 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5958uztrn2 8586 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
6057, 59sylan 271 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
61 cnex 7063 . . . . . . . . . . . . . . . 16 ℂ ∈ V
6261a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ℂ ∈ V)
63 simpr 107 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3syl6eleqr 2147 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6535ralrimiva 2409 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6665ad3antrrr 469 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
67 fveq2 5206 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6867eleq1d 2122 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6968rspcva 2671 . . . . . . . . . . . . . . . 16 ((𝑎𝑍 ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝐹𝑎) ∈ ℂ)
7064, 66, 69syl2anc 397 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
71 addcl 7064 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
7271adantl 266 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
7355, 60, 62, 70, 72iseqm1 9391 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)))
7473oveq1d 5555 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7535adantlr 454 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7643, 75syldan 270 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7741, 76pncan2d 7387 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (𝐹𝑘))
7874, 77eqtr2d 2089 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7978fveq2d 5210 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
8045, 54, 793eqtr4d 2098 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
8180breq1d 3802 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
8234, 81sylibd 142 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
8382ralrimdva 2416 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8420, 83syl5 32 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
85 fveq2 5206 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8685raleqdv 2528 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8786rspcev 2673 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
889, 84, 87syl6an 1339 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8988rexlimdva 2450 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9089ralimdv 2405 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
917, 90mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
92 serif0.3 . . 3 (𝜑𝐹𝑉)
93 eqidd 2057 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
943, 1, 92, 93, 35clim0c 10038 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9591, 94mpbird 160 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  wrex 2324  Vcvv 2574   class class class wbr 3792  dom cdm 4373  wf 4926  cfv 4930  (class class class)co 5540  cc 6945  0cc0 6947  1c1 6948   + caddc 6950   < clt 7119  cmin 7245  cz 8302  cuz 8569  +crp 8681  seqcseq 9375  abscabs 9824  cli 10030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-arch 7061  ax-caucvg 7062
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-2 8049  df-3 8050  df-4 8051  df-n0 8240  df-z 8303  df-uz 8570  df-rp 8682  df-iseq 9376  df-iexp 9420  df-cj 9670  df-re 9671  df-im 9672  df-rsqrt 9825  df-abs 9826  df-clim 10031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator