ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serile GIF version

Theorem serile 9418
Description: Comparison of partial sums of two infinite series of reals. (Contributed by Jim Kingdon, 22-Aug-2021.)
Hypotheses
Ref Expression
serige0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serige0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
serile.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
serile.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
serile (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ (seq𝑀( + , 𝐺, ℂ)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serile
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serige0.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 vex 2577 . . . . . 6 𝑘 ∈ V
3 serile.3 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4 serige0.2 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
53, 4resubcld 7451 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ)
6 fveq2 5206 . . . . . . . 8 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
7 fveq2 5206 . . . . . . . 8 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
86, 7oveq12d 5558 . . . . . . 7 (𝑥 = 𝑘 → ((𝐺𝑥) − (𝐹𝑥)) = ((𝐺𝑘) − (𝐹𝑘)))
9 eqid 2056 . . . . . . 7 (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))) = (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))
108, 9fvmptg 5276 . . . . . 6 ((𝑘 ∈ V ∧ ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
112, 5, 10sylancr 399 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
1211, 5eqeltrd 2130 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) ∈ ℝ)
13 serile.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
143, 4subge0d 7600 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1513, 14mpbird 160 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ ((𝐺𝑘) − (𝐹𝑘)))
1615, 11breqtrrd 3818 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘))
171, 12, 16serige0 9417 . . 3 (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))), ℂ)‘𝑁))
183recnd 7113 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
194recnd 7113 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
201, 18, 19, 11isersub 9408 . . 3 (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))), ℂ)‘𝑁) = ((seq𝑀( + , 𝐺, ℂ)‘𝑁) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
2117, 20breqtrd 3816 . 2 (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺, ℂ)‘𝑁) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
22 eluzel2 8574 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
231, 22syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
24 cnex 7063 . . . . . . 7 ℂ ∈ V
2524a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
26 ax-resscn 7034 . . . . . . 7 ℝ ⊆ ℂ
2726a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
28 readdcl 7065 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ)
2928adantl 266 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ)
30 addcl 7064 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
3130adantl 266 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
3223, 25, 27, 3, 29, 31iseqss 9390 . . . . 5 (𝜑 → seq𝑀( + , 𝐺, ℝ) = seq𝑀( + , 𝐺, ℂ))
3332fveq1d 5208 . . . 4 (𝜑 → (seq𝑀( + , 𝐺, ℝ)‘𝑁) = (seq𝑀( + , 𝐺, ℂ)‘𝑁))
34 reex 7073 . . . . . 6 ℝ ∈ V
3534a1i 9 . . . . 5 (𝜑 → ℝ ∈ V)
361, 35, 3, 29iseqcl 9387 . . . 4 (𝜑 → (seq𝑀( + , 𝐺, ℝ)‘𝑁) ∈ ℝ)
3733, 36eqeltrrd 2131 . . 3 (𝜑 → (seq𝑀( + , 𝐺, ℂ)‘𝑁) ∈ ℝ)
3823, 25, 27, 4, 29, 31iseqss 9390 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℝ) = seq𝑀( + , 𝐹, ℂ))
3938fveq1d 5208 . . . 4 (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝑁) = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
401, 35, 4, 29iseqcl 9387 . . . 4 (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝑁) ∈ ℝ)
4139, 40eqeltrrd 2131 . . 3 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℝ)
4237, 41subge0d 7600 . 2 (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺, ℂ)‘𝑁) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)) ↔ (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ (seq𝑀( + , 𝐺, ℂ)‘𝑁)))
4321, 42mpbid 139 1 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ (seq𝑀( + , 𝐺, ℂ)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  Vcvv 2574  wss 2945   class class class wbr 3792  cmpt 3846  cfv 4930  (class class class)co 5540  cc 6945  cr 6946  0cc0 6947   + caddc 6950  cle 7120  cmin 7245  cz 8302  cuz 8569  seqcseq 9375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-fz 8977  df-fzo 9102  df-iseq 9376
This theorem is referenced by:  iserile  10093
  Copyright terms: Public domain W3C validator