ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess2 GIF version

Theorem sess2 4103
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))

Proof of Theorem sess2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3032 . . 3 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V))
2 rabss2 3051 . . . . 5 (𝐴𝐵 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥})
3 ssexg 3924 . . . . . 6 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} ∧ {𝑦𝐵𝑦𝑅𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
43ex 112 . . . . 5 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
52, 4syl 14 . . . 4 (𝐴𝐵 → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
65ralimdv 2405 . . 3 (𝐴𝐵 → (∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
71, 6syld 44 . 2 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 4098 . 2 (𝑅 Se 𝐵 ↔ ∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V)
9 df-se 4098 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 198 1 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  wral 2323  {crab 2327  Vcvv 2574  wss 2945   class class class wbr 3792   Se wse 4094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-v 2576  df-in 2952  df-ss 2959  df-se 4098
This theorem is referenced by:  seeq2  4105
  Copyright terms: Public domain W3C validator