ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftdm GIF version

Theorem shftdm 10562
Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftdm (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem shftdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4 𝐹 ∈ V
21shftfval 10561 . . 3 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32dmeqd 4711 . 2 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4 simpr 109 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
5 simpl 108 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
64, 5subcld 8041 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥𝐴) ∈ ℂ)
7 eldmg 4704 . . . . . . 7 ((𝑥𝐴) ∈ ℂ → ((𝑥𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥𝐴)𝐹𝑦))
86, 7syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥𝐴)𝐹𝑦))
98pm5.32da 447 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦)))
10 19.42v 1862 . . . . 5 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
119, 10syl6rbbr 198 . . . 4 (𝐴 ∈ ℂ → (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)))
1211abbidv 2235 . . 3 (𝐴 ∈ ℂ → {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)})
13 dmopab 4720 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
14 df-rab 2402 . . 3 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
1512, 13, 143eqtr4g 2175 . 2 (𝐴 ∈ ℂ → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
163, 15eqtrd 2150 1 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wex 1453  wcel 1465  {cab 2103  {crab 2397  Vcvv 2660   class class class wbr 3899  {copab 3958  dom cdm 4509  (class class class)co 5742  cc 7586  cmin 7901   shift cshi 10554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903  df-shft 10555
This theorem is referenced by:  shftfn  10564
  Copyright terms: Public domain W3C validator