ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem GIF version

Theorem shftlem 9889
Description: Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2362 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)}
2 npcan 7420 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
32ancoms 264 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
43eqcomd 2088 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
5 oveq1 5571 . . . . . . . . . 10 (𝑦 = (𝑥𝐴) → (𝑦 + 𝐴) = ((𝑥𝐴) + 𝐴))
65eqeq2d 2094 . . . . . . . . 9 (𝑦 = (𝑥𝐴) → (𝑥 = (𝑦 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
76rspcev 2710 . . . . . . . 8 (((𝑥𝐴) ∈ 𝐵𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴))
87expcom 114 . . . . . . 7 (𝑥 = ((𝑥𝐴) + 𝐴) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
94, 8syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
109expimpd 355 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
1110adantr 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
12 ssel2 3004 . . . . . . . . . 10 ((𝐵 ⊆ ℂ ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
13 addcl 7196 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
1412, 13sylan 277 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
15 pncan 7417 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
1612, 15sylan 277 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
17 simplr 497 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → 𝑦𝐵)
1816, 17eqeltrd 2159 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)
1914, 18jca 300 . . . . . . . 8 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2019ancoms 264 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ⊆ ℂ ∧ 𝑦𝐵)) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2120anassrs 392 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
22 eleq1 2145 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ↔ (𝑦 + 𝐴) ∈ ℂ))
23 oveq1 5571 . . . . . . . 8 (𝑥 = (𝑦 + 𝐴) → (𝑥𝐴) = ((𝑦 + 𝐴) − 𝐴))
2423eleq1d 2151 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → ((𝑥𝐴) ∈ 𝐵 ↔ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2522, 24anbi12d 457 . . . . . 6 (𝑥 = (𝑦 + 𝐴) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)))
2621, 25syl5ibrcom 155 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2726rexlimdva 2482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → (∃𝑦𝐵 𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2811, 27impbid 127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
2928abbidv 2200 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
301, 29syl5eq 2127 1 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  {cab 2069  wrex 2354  {crab 2357  wss 2983  (class class class)co 5564  cc 7077   + caddc 7082  cmin 7382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-setind 4309  ax-resscn 7166  ax-1cn 7167  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-addcom 7174  ax-addass 7176  ax-distr 7178  ax-i2m1 7179  ax-0id 7182  ax-rnegex 7183  ax-cnre 7185
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator