ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem GIF version

Theorem shftlem 9638
Description: Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2332 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)}
2 npcan 7282 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
32ancoms 259 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
43eqcomd 2061 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
5 oveq1 5546 . . . . . . . . . 10 (𝑦 = (𝑥𝐴) → (𝑦 + 𝐴) = ((𝑥𝐴) + 𝐴))
65eqeq2d 2067 . . . . . . . . 9 (𝑦 = (𝑥𝐴) → (𝑥 = (𝑦 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
76rspcev 2673 . . . . . . . 8 (((𝑥𝐴) ∈ 𝐵𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴))
87expcom 113 . . . . . . 7 (𝑥 = ((𝑥𝐴) + 𝐴) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
94, 8syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
109expimpd 349 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
1110adantr 265 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
12 ssel2 2967 . . . . . . . . . 10 ((𝐵 ⊆ ℂ ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
13 addcl 7063 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
1412, 13sylan 271 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
15 pncan 7279 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
1612, 15sylan 271 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
17 simplr 490 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → 𝑦𝐵)
1816, 17eqeltrd 2130 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)
1914, 18jca 294 . . . . . . . 8 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2019ancoms 259 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ⊆ ℂ ∧ 𝑦𝐵)) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2120anassrs 386 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
22 eleq1 2116 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ↔ (𝑦 + 𝐴) ∈ ℂ))
23 oveq1 5546 . . . . . . . 8 (𝑥 = (𝑦 + 𝐴) → (𝑥𝐴) = ((𝑦 + 𝐴) − 𝐴))
2423eleq1d 2122 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → ((𝑥𝐴) ∈ 𝐵 ↔ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2522, 24anbi12d 450 . . . . . 6 (𝑥 = (𝑦 + 𝐴) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)))
2621, 25syl5ibrcom 150 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2726rexlimdva 2450 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → (∃𝑦𝐵 𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2811, 27impbid 124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
2928abbidv 2171 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
301, 29syl5eq 2100 1 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {cab 2042  wrex 2324  {crab 2327  wss 2944  (class class class)co 5539  cc 6944   + caddc 6949  cmin 7244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-sub 7246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator