ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp111 GIF version

Theorem simp111 1044
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 945 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 936 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator