ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2i GIF version

Theorem simp2i 925
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 916 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 7 1 𝜓
Colors of variables: wff set class
Syntax hints:  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator