ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl1l GIF version

Theorem simpl1l 966
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl1l ((((𝜑𝜓) ∧ 𝜒𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpl1l
StepHypRef Expression
1 simp1l 939 . 2 (((𝜑𝜓) ∧ 𝜒𝜃) → 𝜑)
21adantr 265 1 ((((𝜑𝜓) ∧ 𝜒𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  tfisi  4337  prarloc  6658
  Copyright terms: Public domain W3C validator