ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl3r GIF version

Theorem simpl3r 971
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl3r (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)

Proof of Theorem simpl3r
StepHypRef Expression
1 simp3r 944 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
21adantr 265 1 (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  tfisi  4337  ltmul1a  7655  lemul1a  7898  dvdscmulr  10135  dvdsmulcr  10136  dvdsadd2b  10153
  Copyright terms: Public domain W3C validator