ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 GIF version

Theorem simpll2 955
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 919 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
21adantr 265 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  fidceq  6360  fidifsnen  6361  cauappcvgprlemlol  6802  caucvgprlemlol  6825  caucvgprprlemlol  6853  elfzonelfzo  9187  qbtwnre  9212  expival  9416  subcn2  10055
  Copyright terms: Public domain W3C validator