ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprr3 GIF version

Theorem simprr3 965
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprr3 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simprr3
StepHypRef Expression
1 simpr3 923 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
21adantl 266 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  mullocpr  6727  icodiamlt  10007
  Copyright terms: Public domain W3C validator