Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon2dm GIF version

Theorem smofvon2dm 5874
 Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2dm ((Smo 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 5865 . . 3 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 919 . 2 (Smo 𝐹𝐹:dom 𝐹⟶On)
32ffvelrnda 5265 1 ((Smo 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1393  ∀wral 2303  Ord word 4071  Oncon0 4072  dom cdm 4308  ⟶wf 4861  ‘cfv 4865  Smo wsmo 5863 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-sbc 2762  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-br 3762  df-opab 3816  df-tr 3852  df-id 4027  df-iord 4075  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-fv 4873  df-smo 5864 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator