Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwi GIF version

Theorem snelpwi 3976
 Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
Assertion
Ref Expression
snelpwi (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwi
StepHypRef Expression
1 snssi 3536 . 2 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
2 elex 2583 . . 3 (𝐴𝐵𝐴 ∈ V)
3 snexgOLD 3963 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
4 elpwg 3395 . . 3 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
52, 3, 43syl 17 . 2 (𝐴𝐵 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
61, 5mpbird 160 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102   ∈ wcel 1409  Vcvv 2574   ⊆ wss 2945  𝒫 cpw 3387  {csn 3403 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409 This theorem is referenced by:  unipw  3981
 Copyright terms: Public domain W3C validator