![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2091 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | abbidv 2197 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
3 | df-sn 3406 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
4 | df-sn 3406 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2139 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 {cab 2068 {csn 3400 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-sn 3406 |
This theorem is referenced by: sneqi 3412 sneqd 3413 euabsn 3464 absneu 3466 preq1 3471 tpeq3 3482 snssg 3524 sneqrg 3556 sneqbg 3557 opeq1 3572 unisng 3620 suceq 4159 snnex 4201 opeliunxp 4415 relop 4508 elimasng 4717 dmsnsnsng 4822 elxp4 4832 elxp5 4833 iotajust 4890 fconstg 5108 f1osng 5192 nfvres 5232 fsng 5362 fnressn 5375 fressnfv 5376 funfvima3 5418 isoselem 5484 1stvalg 5794 2ndvalg 5795 2ndval2 5808 fo1st 5809 fo2nd 5810 f1stres 5811 f2ndres 5812 mpt2mptsx 5848 dmmpt2ssx 5850 fmpt2x 5851 brtpos2 5894 dftpos4 5906 tpostpos 5907 eceq1 6200 ensn1g 6336 en1 6338 xpsneng 6356 xpcomco 6360 xpassen 6364 xpdom2 6365 phplem3 6379 phplem3g 6381 fidifsnen 6395 pm54.43 6508 expival 9564 |
Copyright terms: Public domain | W3C validator |