![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexg | GIF version |
Description: A singleton whose element exists is a set. The A ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexg | ⊢ (A ∈ 𝑉 → {A} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 3924 | . 2 ⊢ (A ∈ 𝑉 → 𝒫 A ∈ V) | |
2 | snsspw 3526 | . . 3 ⊢ {A} ⊆ 𝒫 A | |
3 | ssexg 3887 | . . 3 ⊢ (({A} ⊆ 𝒫 A ∧ 𝒫 A ∈ V) → {A} ∈ V) | |
4 | 2, 3 | mpan 400 | . 2 ⊢ (𝒫 A ∈ V → {A} ∈ V) |
5 | 1, 4 | syl 14 | 1 ⊢ (A ∈ 𝑉 → {A} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1390 Vcvv 2551 ⊆ wss 2911 𝒫 cpw 3351 {csn 3367 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 |
This theorem is referenced by: snex 3928 opexg 3955 tpexg 4145 opabex3d 5690 opabex3 5691 mpt2exxg 5775 cnvf1o 5788 brtpos2 5807 tfr0 5878 tfrlemisucaccv 5880 tfrlemibxssdm 5882 tfrlemibfn 5883 xpsnen2g 6239 |
Copyright terms: Public domain | W3C validator |