ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so2nr GIF version

Theorem so2nr 4083
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so2nr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem so2nr
StepHypRef Expression
1 sopo 4075 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 po2nr 4071 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
31, 2sylan 271 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wcel 1407   class class class wbr 3789   Po wpo 4056   Or wor 4057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-v 2574  df-un 2947  df-sn 3406  df-pr 3407  df-op 3409  df-br 3790  df-po 4058  df-iso 4059
This theorem is referenced by:  sotricim  4085  cauappcvgprlemdisj  6777  cauappcvgprlemladdru  6782  cauappcvgprlemladdrl  6783  caucvgprlemnbj  6793  caucvgprprlemnbj  6819  ltnsym2  7137
  Copyright terms: Public domain W3C validator