ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegft GIF version

Theorem spcegft 2649
Description: A closed version of spcegf 2653. (Contributed by Jim Kingdon, 22-Jun-2018.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcegft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))

Proof of Theorem spcegft
StepHypRef Expression
1 bi2 125 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
21imim2i 12 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
32alimi 1360 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)))
4 spcimgft.1 . . 3 𝑥𝜓
5 spcimgft.2 . . 3 𝑥𝐴
64, 5spcimegft 2648 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
73, 6syl 14 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wal 1257   = wceq 1259  wnf 1365  wex 1397  wcel 1409  wnfc 2181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  spcegf  2653
  Copyright terms: Public domain W3C validator