ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqne2sq GIF version

Theorem sqne2sq 10762
Description: The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Assertion
Ref Expression
sqne2sq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))

Proof of Theorem sqne2sq
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3809 . . . . . . 7 (𝑐 = 𝑧 → (2 ∥ 𝑐 ↔ 2 ∥ 𝑧))
21notbid 625 . . . . . 6 (𝑐 = 𝑧 → (¬ 2 ∥ 𝑐 ↔ ¬ 2 ∥ 𝑧))
32cbvrabv 2609 . . . . 5 {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
4 oveq2 5571 . . . . . 6 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
5 oveq2 5571 . . . . . . 7 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
65oveq1d 5578 . . . . . 6 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
74, 6cbvmpt2v 5635 . . . . 5 (𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
83, 72sqpwodd 10761 . . . 4 (𝐵 ∈ ℕ → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
98adantl 271 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
103, 7sqpweven 10760 . . . . 5 (𝐴 ∈ ℕ → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
1110ad2antrr 472 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
12 fveq2 5229 . . . . . . 7 ((𝐴↑2) = (2 · (𝐵↑2)) → ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)) = ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))
1312fveq2d 5233 . . . . . 6 ((𝐴↑2) = (2 · (𝐵↑2)) → (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) = (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
1413breq2d 3817 . . . . 5 ((𝐴↑2) = (2 · (𝐵↑2)) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1514adantl 271 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1611, 15mpbid 145 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
179, 16mtand 624 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴↑2) = (2 · (𝐵↑2)))
1817neqned 2256 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wne 2249  {crab 2357   class class class wbr 3805  ccnv 4390  cfv 4952  (class class class)co 5563  cmpt2 5565  2nd c2nd 5817   · cmul 7100  cn 8158  2c2 8208  0cn0 8407  cexp 9624  cdvds 10403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-xor 1308  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-1o 6085  df-2o 6086  df-er 6193  df-en 6309  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fzo 9282  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404  df-gcd 10546  df-prm 10697
This theorem is referenced by:  sqrt2irraplemnn  10764
  Copyright terms: Public domain W3C validator