![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrtrval | GIF version |
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
Ref | Expression |
---|---|
sqrtrval | ⊢ (A ∈ ℝ → (√‘A) = (℩x ∈ ℝ ((x↑2) = A ∧ 0 ≤ x))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2046 | . . . 4 ⊢ (y = A → ((x↑2) = y ↔ (x↑2) = A)) | |
2 | 1 | anbi1d 438 | . . 3 ⊢ (y = A → (((x↑2) = y ∧ 0 ≤ x) ↔ ((x↑2) = A ∧ 0 ≤ x))) |
3 | 2 | riotabidv 5413 | . 2 ⊢ (y = A → (℩x ∈ ℝ ((x↑2) = y ∧ 0 ≤ x)) = (℩x ∈ ℝ ((x↑2) = A ∧ 0 ≤ x))) |
4 | df-rsqrt 9207 | . 2 ⊢ √ = (y ∈ ℝ ↦ (℩x ∈ ℝ ((x↑2) = y ∧ 0 ≤ x))) | |
5 | reex 6813 | . . 3 ⊢ ℝ ∈ V | |
6 | riotaexg 5415 | . . 3 ⊢ (ℝ ∈ V → (℩x ∈ ℝ ((x↑2) = A ∧ 0 ≤ x)) ∈ V) | |
7 | 5, 6 | ax-mp 7 | . 2 ⊢ (℩x ∈ ℝ ((x↑2) = A ∧ 0 ≤ x)) ∈ V |
8 | 3, 4, 7 | fvmpt 5192 | 1 ⊢ (A ∈ ℝ → (√‘A) = (℩x ∈ ℝ ((x↑2) = A ∧ 0 ≤ x))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∈ wcel 1390 Vcvv 2551 class class class wbr 3755 ‘cfv 4845 ℩crio 5410 (class class class)co 5455 ℝcr 6710 0cc0 6711 ≤ cle 6858 2c2 7744 ↑cexp 8908 √csqrt 9205 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-cnex 6774 ax-resscn 6775 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-sbc 2759 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fv 4853 df-riota 5411 df-rsqrt 9207 |
This theorem is referenced by: sqrt0 9213 sqrtsq 9214 |
Copyright terms: Public domain | W3C validator |