ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr GIF version

Theorem srpospr 7559
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem srpospr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7503 . . 3 R = ((P × P) / ~R )
2 breq2 3903 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (0R <R [⟨𝑎, 𝑏⟩] ~R ↔ 0R <R 𝐴))
3 eqeq2 2127 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
43reubidv 2591 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
52, 4imbi12d 233 . . 3 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ((0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ) ↔ (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)))
6 gt0srpr 7524 . . . . . . . 8 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
76biimpi 119 . . . . . . 7 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
87adantl 275 . . . . . 6 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → 𝑏<P 𝑎)
9 lteupri 7393 . . . . . 6 (𝑏<P 𝑎 → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
108, 9syl 14 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
11 simpr 109 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑥P)
12 1pr 7330 . . . . . . . . . 10 1PP
1312a1i 9 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 1PP)
14 addclpr 7313 . . . . . . . . 9 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
1511, 13, 14syl2anc 408 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) ∈ P)
16 simplll 507 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑎P)
17 simpllr 508 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑏P)
18 enreceq 7512 . . . . . . . 8 ((((𝑥 +P 1P) ∈ P ∧ 1PP) ∧ (𝑎P𝑏P)) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
1915, 13, 16, 17, 18syl22anc 1202 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
20 addcomprg 7354 . . . . . . . . . . . 12 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) = (1P +P 𝑥))
2111, 13, 20syl2anc 408 . . . . . . . . . . 11 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) = (1P +P 𝑥))
2221oveq1d 5757 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = ((1P +P 𝑥) +P 𝑏))
23 addassprg 7355 . . . . . . . . . . 11 ((1PP𝑥P𝑏P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2413, 11, 17, 23syl3anc 1201 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2522, 24eqtrd 2150 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2625eqeq1d 2126 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎)))
27 addclpr 7313 . . . . . . . . . . 11 ((𝑥P𝑏P) → (𝑥 +P 𝑏) ∈ P)
2811, 17, 27syl2anc 408 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) ∈ P)
29 addcanprg 7392 . . . . . . . . . 10 ((1PP ∧ (𝑥 +P 𝑏) ∈ P𝑎P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
3013, 28, 16, 29syl3anc 1201 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
31 oveq2 5750 . . . . . . . . 9 ((𝑥 +P 𝑏) = 𝑎 → (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎))
3230, 31impbid1 141 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
3326, 32bitrd 187 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
34 addcomprg 7354 . . . . . . . . 9 ((𝑥P𝑏P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3511, 17, 34syl2anc 408 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3635eqeq1d 2126 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 𝑏) = 𝑎 ↔ (𝑏 +P 𝑥) = 𝑎))
3719, 33, 363bitrrd 214 . . . . . 6 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑏 +P 𝑥) = 𝑎 ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3837reubidva 2590 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → (∃!𝑥P (𝑏 +P 𝑥) = 𝑎 ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3910, 38mpbid 146 . . . 4 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R )
4039ex 114 . . 3 ((𝑎P𝑏P) → (0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
411, 5, 40ecoptocl 6484 . 2 (𝐴R → (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
4241imp 123 1 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  ∃!wreu 2395  cop 3500   class class class wbr 3899  (class class class)co 5742  [cec 6395  Pcnp 7067  1Pc1p 7068   +P cpp 7069  <P cltp 7071   ~R cer 7072  Rcnr 7073  0Rc0r 7074   <R cltr 7079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-iltp 7246  df-enr 7502  df-nr 7503  df-ltr 7506  df-0r 7507
This theorem is referenced by:  prsrriota  7564  caucvgsrlemcl  7565  caucvgsrlemgt1  7571
  Copyright terms: Public domain W3C validator