ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab GIF version

Theorem ss2ab 3036
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2196 . . 3 𝑥{𝑥𝜑}
2 nfab1 2196 . . 3 𝑥{𝑥𝜓}
31, 2dfss2f 2964 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2044 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2044 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 232 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1375 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 177 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wal 1257  wcel 1409  {cab 2042  wss 2945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-in 2952  df-ss 2959
This theorem is referenced by:  abss  3037  ssab  3038  ss2abi  3040  ss2abdv  3041  ss2rab  3044  rabss2  3051  iotanul  4910  iotass  4912
  Copyright terms: Public domain W3C validator