ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 GIF version

Theorem ssab2 3049
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 106 . 2 ((𝑥𝐴𝜑) → 𝑥𝐴)
21abssi 3040 1 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 101  wcel 1407  {cab 2040  wss 2942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-in 2949  df-ss 2956
This theorem is referenced by:  ssrab2  3050  zfausab  3924  exss  3988  dmopabss  4572  fabexg  5102
  Copyright terms: Public domain W3C validator