![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssdif0im | GIF version |
Description: Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
ssdif0im | ⊢ (A ⊆ B → (A ∖ B) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imanim 784 | . . . 4 ⊢ ((x ∈ A → x ∈ B) → ¬ (x ∈ A ∧ ¬ x ∈ B)) | |
2 | eldif 2921 | . . . 4 ⊢ (x ∈ (A ∖ B) ↔ (x ∈ A ∧ ¬ x ∈ B)) | |
3 | 1, 2 | sylnibr 601 | . . 3 ⊢ ((x ∈ A → x ∈ B) → ¬ x ∈ (A ∖ B)) |
4 | 3 | alimi 1341 | . 2 ⊢ (∀x(x ∈ A → x ∈ B) → ∀x ¬ x ∈ (A ∖ B)) |
5 | dfss2 2928 | . 2 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
6 | eq0 3233 | . 2 ⊢ ((A ∖ B) = ∅ ↔ ∀x ¬ x ∈ (A ∖ B)) | |
7 | 4, 5, 6 | 3imtr4i 190 | 1 ⊢ (A ⊆ B → (A ∖ B) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∀wal 1240 = wceq 1242 ∈ wcel 1390 ∖ cdif 2908 ⊆ wss 2911 ∅c0 3218 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-dif 2914 df-in 2918 df-ss 2925 df-nul 3219 |
This theorem is referenced by: vdif0im 3281 difrab0eqim 3282 difid 3286 difin0 3291 |
Copyright terms: Public domain | W3C validator |