![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq1 3021 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ⊆ wss 2974 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: sseq12d 3029 eqsstrd 3034 snssg 3530 ssiun2s 3730 treq 3889 onsucsssucexmid 4278 funimass1 5007 feq1 5061 sbcfg 5076 fvmptssdm 5287 fvimacnvi 5313 nnsucsssuc 6136 ereq1 6179 |
Copyright terms: Public domain | W3C validator |