Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel GIF version

Theorem ssnel 4245
 Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel (AB → ¬ B A)

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4224 . 2 ¬ B B
2 ssel 2933 . 2 (AB → (B AB B))
31, 2mtoi 589 1 (AB → ¬ B A)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 1390   ⊆ wss 2911 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-setind 4220 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-v 2553  df-dif 2914  df-in 2918  df-ss 2925  df-sn 3373 This theorem is referenced by:  nntri1  6013
 Copyright terms: Public domain W3C validator