ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnelpss GIF version

Theorem ssnelpss 3316
Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
ssnelpss (𝐴𝐵 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))

Proof of Theorem ssnelpss
StepHypRef Expression
1 nelneq2 2155 . . 3 ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → ¬ 𝐵 = 𝐴)
2 eqcom 2058 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
31, 2sylnib 611 . 2 ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → ¬ 𝐴 = 𝐵)
4 dfpss2 3056 . . 3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
54baibr 840 . 2 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
63, 5syl5ib 147 1 (𝐴𝐵 → ((𝐶𝐵 ∧ ¬ 𝐶𝐴) → 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101   = wceq 1259  wcel 1409  wss 2944  wpss 2945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-clel 2052  df-ne 2221  df-pss 2960
This theorem is referenced by:  ssnelpssd  3317
  Copyright terms: Public domain W3C validator