Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssorduni GIF version

Theorem ssorduni 4240
 Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni (𝐴 ⊆ On → Ord 𝐴)

Proof of Theorem ssorduni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3611 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
2 ssel 2966 . . . . . . . . 9 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
3 onelss 4151 . . . . . . . . 9 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
42, 3syl6 33 . . . . . . . 8 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥𝑦)))
5 anc2r 315 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑦𝑥𝑦)) → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
64, 5syl 14 . . . . . . 7 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
7 ssuni 3629 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥 𝐴)
86, 7syl8 69 . . . . . 6 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 𝐴)))
98rexlimdv 2449 . . . . 5 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 𝐴))
101, 9syl5bi 145 . . . 4 (𝐴 ⊆ On → (𝑥 𝐴𝑥 𝐴))
1110ralrimiv 2408 . . 3 (𝐴 ⊆ On → ∀𝑥 𝐴𝑥 𝐴)
12 dftr3 3885 . . 3 (Tr 𝐴 ↔ ∀𝑥 𝐴𝑥 𝐴)
1311, 12sylibr 141 . 2 (𝐴 ⊆ On → Tr 𝐴)
14 onelon 4148 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1514ex 112 . . . . . 6 (𝑦 ∈ On → (𝑥𝑦𝑥 ∈ On))
162, 15syl6 33 . . . . 5 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 ∈ On)))
1716rexlimdv 2449 . . . 4 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 ∈ On))
181, 17syl5bi 145 . . 3 (𝐴 ⊆ On → (𝑥 𝐴𝑥 ∈ On))
1918ssrdv 2978 . 2 (𝐴 ⊆ On → 𝐴 ⊆ On)
20 ordon 4239 . . 3 Ord On
21 trssord 4144 . . . 4 ((Tr 𝐴 𝐴 ⊆ On ∧ Ord On) → Ord 𝐴)
22213exp 1114 . . 3 (Tr 𝐴 → ( 𝐴 ⊆ On → (Ord On → Ord 𝐴)))
2320, 22mpii 43 . 2 (Tr 𝐴 → ( 𝐴 ⊆ On → Ord 𝐴))
2413, 19, 23sylc 60 1 (𝐴 ⊆ On → Ord 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ∈ wcel 1409  ∀wral 2323  ∃wrex 2324   ⊆ wss 2944  ∪ cuni 3607  Tr wtr 3881  Ord word 4126  Oncon0 4127 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-in 2951  df-ss 2958  df-uni 3608  df-tr 3882  df-iord 4130  df-on 4132 This theorem is referenced by:  ssonuni  4241  orduni  4248  tfrlem8  5964  tfrexlem  5978
 Copyright terms: Public domain W3C validator