ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr GIF version

Theorem sssnr 3680
Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4125. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3401 . . 3 ∅ ⊆ {𝐵}
2 sseq1 3120 . . 3 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
31, 2mpbiri 167 . 2 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
4 eqimss 3151 . 2 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
53, 4jaoi 705 1 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wss 3071  c0 3363  {csn 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364
This theorem is referenced by:  pwsnss  3730
  Copyright terms: Public domain W3C validator