ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr GIF version

Theorem sstpr 3684
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3683 . . 3 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
2 prsstp12 3673 . . 3 {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐷}
31, 2sstrdi 3109 . 2 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
4 snsstp3 3672 . . . . 5 {𝐷} ⊆ {𝐵, 𝐶, 𝐷}
5 sseq1 3120 . . . . 5 (𝐴 = {𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
64, 5mpbiri 167 . . . 4 (𝐴 = {𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
7 prsstp13 3674 . . . . 5 {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
8 sseq1 3120 . . . . 5 (𝐴 = {𝐵, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
97, 8mpbiri 167 . . . 4 (𝐴 = {𝐵, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
106, 9jaoi 705 . . 3 ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
11 prsstp23 3675 . . . . 5 {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
12 sseq1 3120 . . . . 5 (𝐴 = {𝐶, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
1311, 12mpbiri 167 . . . 4 (𝐴 = {𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
14 eqimss 3151 . . . 4 (𝐴 = {𝐵, 𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1513, 14jaoi 705 . . 3 ((𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1610, 15jaoi 705 . 2 (((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
173, 16jaoi 705 1 ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wss 3071  c0 3363  {csn 3527  {cpr 3528  {ctp 3529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3or 963  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-tp 3535
This theorem is referenced by:  pwtpss  3733
  Copyright terms: Public domain W3C validator