Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun GIF version

Theorem ssun 3161
 Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3147 . 2 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
2 ssun4 3148 . 2 (𝐴𝐶𝐴 ⊆ (𝐵𝐶))
31, 2jaoi 669 1 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 662   ∪ cun 2980   ⊆ wss 2982 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-in 2988  df-ss 2995 This theorem is referenced by:  pwunss  4066  pwssunim  4067
 Copyright terms: Public domain W3C validator