ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxpbm GIF version

Theorem ssxpbm 4786
Description: A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
ssxpbm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem ssxpbm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4775 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
2 dmxpm 4583 . . . . . . . . 9 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
32adantl 271 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) = 𝐴)
41, 3sylbir 133 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → dom (𝐴 × 𝐵) = 𝐴)
54adantr 270 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴)
6 dmss 4562 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
76adantl 271 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
85, 7eqsstr3d 3035 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷))
9 dmxpss 4783 . . . . 5 dom (𝐶 × 𝐷) ⊆ 𝐶
108, 9syl6ss 3012 . . . 4 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴𝐶)
11 rnxpm 4782 . . . . . . . . 9 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
1211adantr 270 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) → ran (𝐴 × 𝐵) = 𝐵)
131, 12sylbir 133 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ran (𝐴 × 𝐵) = 𝐵)
1413adantr 270 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵)
15 rnss 4592 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1615adantl 271 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1714, 16eqsstr3d 3035 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷))
18 rnxpss 4784 . . . . 5 ran (𝐶 × 𝐷) ⊆ 𝐷
1917, 18syl6ss 3012 . . . 4 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵𝐷)
2010, 19jca 300 . . 3 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴𝐶𝐵𝐷))
2120ex 113 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴𝐶𝐵𝐷)))
22 xpss12 4473 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
2321, 22impbid1 140 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  wss 2974   × cxp 4369  dom cdm 4371  ran crn 4372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-cnv 4379  df-dm 4381  df-rn 4382
This theorem is referenced by:  xp11m  4789
  Copyright terms: Public domain W3C validator