Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf GIF version

Theorem strcollnf 10938
Description: Version of ax-strcoll 10935 with one DV condition removed, the other DV condition replaced by a non-freeness hypothesis, and without initial universal quantifier. (Contributed by BJ, 21-Oct-2019.)
Hypothesis
Ref Expression
strcollnf.nf 𝑏𝜑
Assertion
Ref Expression
strcollnf (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 10937 . 2 (∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑)))
2 strcollnf.nf . . 3 𝑏𝜑
32ax-gen 1379 . 2 𝑦𝑏𝜑
41, 3mpg 1381 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1283  wnf 1390  wex 1422  wral 2349  wrex 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-strcoll 10935
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator