![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnfALT | GIF version |
Description: Alternate proof of strcollnf 10938, not using strcollnft 10937. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
strcollnfALT | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strcoll2 10936 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑)) | |
2 | nfv 1462 | . . . . 5 ⊢ Ⅎ𝑏 𝑦 ∈ 𝑧 | |
3 | nfcv 2220 | . . . . . 6 ⊢ Ⅎ𝑏𝑎 | |
4 | strcollnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
5 | 3, 4 | nfrexxy 2404 | . . . . 5 ⊢ Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑 |
6 | 2, 5 | nfbi 1522 | . . . 4 ⊢ Ⅎ𝑏(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
7 | 6 | nfal 1509 | . . 3 ⊢ Ⅎ𝑏∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
8 | nfv 1462 | . . 3 ⊢ Ⅎ𝑧∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑) | |
9 | elequ2 1642 | . . . . 5 ⊢ (𝑧 = 𝑏 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) | |
10 | 9 | bibi1d 231 | . . . 4 ⊢ (𝑧 = 𝑏 → ((𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ (𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
11 | 10 | albidv 1746 | . . 3 ⊢ (𝑧 = 𝑏 → (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
12 | 7, 8, 11 | cbvex 1680 | . 2 ⊢ (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
13 | 1, 12 | sylib 120 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 Ⅎwnf 1390 ∃wex 1422 ∀wral 2349 ∃wrex 2350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-strcoll 10935 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |