ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdiri GIF version

Theorem subdiri 7614
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.)
Hypotheses
Ref Expression
mulm1.1 𝐴 ∈ ℂ
mulneg.2 𝐵 ∈ ℂ
subdi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
subdiri ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))

Proof of Theorem subdiri
StepHypRef Expression
1 mulm1.1 . 2 𝐴 ∈ ℂ
2 mulneg.2 . 2 𝐵 ∈ ℂ
3 subdi.3 . 2 𝐶 ∈ ℂ
4 subdir 7592 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
51, 2, 3, 4mp3an 1269 1 ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1285  wcel 1434  (class class class)co 5563  cc 7076   · cmul 7083  cmin 7381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-resscn 7165  ax-1cn 7166  ax-icn 7168  ax-addcl 7169  ax-addrcl 7170  ax-mulcl 7171  ax-addcom 7173  ax-mulcom 7174  ax-addass 7175  ax-distr 7177  ax-i2m1 7178  ax-0id 7181  ax-rnegex 7182  ax-cnre 7184
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2611  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-sub 7383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator