![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucprc | GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4134 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | snprc 3465 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | uneq2 3121 | . . . 4 ⊢ ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) | |
4 | 2, 3 | sylbi 119 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
5 | 1, 4 | syl5eq 2126 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅)) |
6 | un0 3285 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
7 | 5, 6 | syl6eq 2130 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1285 ∈ wcel 1434 Vcvv 2602 ∪ cun 2972 ∅c0 3258 {csn 3406 suc csuc 4128 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-dif 2976 df-un 2978 df-nul 3259 df-sn 3412 df-suc 4134 |
This theorem is referenced by: sucprcreg 4300 sucon 4304 |
Copyright terms: Public domain | W3C validator |