Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucssel GIF version

Theorem sucssel 4189
 Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 4181 . 2 (𝐴𝑉𝐴 ∈ suc 𝐴)
2 ssel 2967 . 2 (suc 𝐴𝐵 → (𝐴 ∈ suc 𝐴𝐴𝐵))
31, 2syl5com 29 1 (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409   ⊆ wss 2945  suc csuc 4130 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-sn 3409  df-suc 4136 This theorem is referenced by:  ordelsuc  4259  bj-nnelirr  10465
 Copyright terms: Public domain W3C validator