ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumdc GIF version

Theorem sumdc 11120
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
sumdc.m (𝜑𝑀 ∈ ℤ)
sumdc.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sumdc
StepHypRef Expression
1 sumdc.dc . . 3 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
2 eleq1 2200 . . . . 5 (𝑥 = 𝑁 → (𝑥𝐴𝑁𝐴))
32dcbid 823 . . . 4 (𝑥 = 𝑁 → (DECID 𝑥𝐴DECID 𝑁𝐴))
43rspcv 2780 . . 3 (𝑁 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴DECID 𝑁𝐴))
51, 4mpan9 279 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
6 sumdc.ss . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
76ssneld 3094 . . . . 5 (𝜑 → (¬ 𝑁 ∈ (ℤ𝑀) → ¬ 𝑁𝐴))
87imp 123 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → ¬ 𝑁𝐴)
98olcd 723 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → (𝑁𝐴 ∨ ¬ 𝑁𝐴))
10 df-dc 820 . . 3 (DECID 𝑁𝐴 ↔ (𝑁𝐴 ∨ ¬ 𝑁𝐴))
119, 10sylibr 133 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
12 sumdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
13 sumdc.n . . . 4 (𝜑𝑁 ∈ ℤ)
14 eluzdc 9397 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
1512, 13, 14syl2anc 408 . . 3 (𝜑DECID 𝑁 ∈ (ℤ𝑀))
16 exmiddc 821 . . 3 (DECID 𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
1715, 16syl 14 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
185, 11, 17mpjaodan 787 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wral 2414  wss 3066  cfv 5118  cz 9047  cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by:  sumeq2  11121  prodeq2  11319
  Copyright terms: Public domain W3C validator