Step | Hyp | Ref
| Expression |
1 | | simpr 108 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
2 | | sumeq2d.bc |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ralrimiva 2439 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
4 | 3 | ad4antr 478 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
5 | | nfcsb1v 2947 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
6 | | nfcsb1v 2947 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐶 |
7 | 5, 6 | nfeq 2230 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶 |
8 | | csbeq1a 2925 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
9 | | csbeq1a 2925 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → 𝐶 = ⦋𝑛 / 𝑘⦌𝐶) |
10 | 8, 9 | eqeq12d 2097 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝐵 = 𝐶 ↔ ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶)) |
11 | 7, 10 | rspc 2704 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶)) |
12 | 1, 4, 11 | sylc 61 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶) |
13 | | simpllr 501 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ) |
14 | | simplrl 502 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
15 | | simplrr 503 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
16 | | simpr 108 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
17 | 13, 14, 15, 16 | sumdc 10396 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → DECID
𝑛 ∈ 𝐴) |
18 | 12, 17 | ifeq1dadc 3396 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
19 | 18 | mpteq2dva 3888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
20 | | iseqeq3 9578 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ)) |
21 | 19, 20 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ)) |
22 | 21 | breq1d 3815 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥)) |
23 | 22 | pm5.32da 440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥))) |
24 | | df-3an 922 |
. . . . . 6
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥)) |
25 | | df-3an 922 |
. . . . . 6
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥)) |
26 | 23, 24, 25 | 3bitr4g 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥))) |
27 | 26 | rexbidva 2370 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥))) |
28 | | f1of 5177 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) |
29 | 28 | ad3antlr 477 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑓:(1...𝑚)⟶𝐴) |
30 | | simplr 497 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ ℕ) |
31 | | simpr 108 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ≤ 𝑚) |
32 | | simp-4r 509 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℕ) |
33 | 32 | nnzd 8601 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℤ) |
34 | | fznn 9234 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
35 | 33, 34 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
36 | 30, 31, 35 | mpbir2and 886 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ (1...𝑚)) |
37 | 29, 36 | ffvelrnd 5355 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑓‘𝑛) ∈ 𝐴) |
38 | 3 | ad4antr 478 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
39 | | nfcsb1v 2947 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
40 | | nfcsb1v 2947 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
41 | 39, 40 | nfeq 2230 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
42 | | csbeq1a 2925 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
43 | | csbeq1a 2925 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
44 | 42, 43 | eqeq12d 2097 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑛) → (𝐵 = 𝐶 ↔ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
45 | 41, 44 | rspc 2704 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
46 | 37, 38, 45 | sylc 61 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
47 | | simpr 108 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
48 | 47 | nnzd 8601 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
49 | | simpllr 501 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ) |
50 | 49 | nnzd 8601 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ) |
51 | | zdcle 8557 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) →
DECID 𝑛 ≤
𝑚) |
52 | 48, 50, 51 | syl2anc 403 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → DECID
𝑛 ≤ 𝑚) |
53 | 46, 52 | ifeq1dadc 3396 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) |
54 | 53 | mpteq2dva 3888 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0))) |
55 | | iseqeq3 9578 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)) |
56 | 54, 55 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)) |
57 | 56 | fveq1d 5231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)) |
58 | 57 | eqeq2d 2094 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))) |
59 | 58 | pm5.32da 440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
60 | 59 | exbidv 1748 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
61 | 60 | rexbidva 2370 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
62 | 27, 61 | orbi12d 740 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))))) |
63 | 62 | iotabidv 4938 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))))) |
64 | | df-isum 10392 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)))) |
65 | | df-isum 10392 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
66 | 63, 64, 65 | 3eqtr4g 2140 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |